6x^2+50x+85=0

Simple and best practice solution for 6x^2+50x+85=0 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 6x^2+50x+85=0 equation:


Simplifying
6x2 + 50x + 85 = 0

Reorder the terms:
85 + 50x + 6x2 = 0

Solving
85 + 50x + 6x2 = 0

Solving for variable 'x'.

Begin completing the square.  Divide all terms by
6 the coefficient of the squared term: 

Divide each side by '6'.
14.16666667 + 8.333333333x + x2 = 0

Move the constant term to the right:

Add '-14.16666667' to each side of the equation.
14.16666667 + 8.333333333x + -14.16666667 + x2 = 0 + -14.16666667

Reorder the terms:
14.16666667 + -14.16666667 + 8.333333333x + x2 = 0 + -14.16666667

Combine like terms: 14.16666667 + -14.16666667 = 0.00000000
0.00000000 + 8.333333333x + x2 = 0 + -14.16666667
8.333333333x + x2 = 0 + -14.16666667

Combine like terms: 0 + -14.16666667 = -14.16666667
8.333333333x + x2 = -14.16666667

The x term is 8.333333333x.  Take half its coefficient (4.166666667).
Square it (17.36111111) and add it to both sides.

Add '17.36111111' to each side of the equation.
8.333333333x + 17.36111111 + x2 = -14.16666667 + 17.36111111

Reorder the terms:
17.36111111 + 8.333333333x + x2 = -14.16666667 + 17.36111111

Combine like terms: -14.16666667 + 17.36111111 = 3.19444444
17.36111111 + 8.333333333x + x2 = 3.19444444

Factor a perfect square on the left side:
(x + 4.166666667)(x + 4.166666667) = 3.19444444

Calculate the square root of the right side: 1.787300881

Break this problem into two subproblems by setting 
(x + 4.166666667) equal to 1.787300881 and -1.787300881.

Subproblem 1

x + 4.166666667 = 1.787300881 Simplifying x + 4.166666667 = 1.787300881 Reorder the terms: 4.166666667 + x = 1.787300881 Solving 4.166666667 + x = 1.787300881 Solving for variable 'x'. Move all terms containing x to the left, all other terms to the right. Add '-4.166666667' to each side of the equation. 4.166666667 + -4.166666667 + x = 1.787300881 + -4.166666667 Combine like terms: 4.166666667 + -4.166666667 = 0.000000000 0.000000000 + x = 1.787300881 + -4.166666667 x = 1.787300881 + -4.166666667 Combine like terms: 1.787300881 + -4.166666667 = -2.379365786 x = -2.379365786 Simplifying x = -2.379365786

Subproblem 2

x + 4.166666667 = -1.787300881 Simplifying x + 4.166666667 = -1.787300881 Reorder the terms: 4.166666667 + x = -1.787300881 Solving 4.166666667 + x = -1.787300881 Solving for variable 'x'. Move all terms containing x to the left, all other terms to the right. Add '-4.166666667' to each side of the equation. 4.166666667 + -4.166666667 + x = -1.787300881 + -4.166666667 Combine like terms: 4.166666667 + -4.166666667 = 0.000000000 0.000000000 + x = -1.787300881 + -4.166666667 x = -1.787300881 + -4.166666667 Combine like terms: -1.787300881 + -4.166666667 = -5.953967548 x = -5.953967548 Simplifying x = -5.953967548

Solution

The solution to the problem is based on the solutions from the subproblems. x = {-2.379365786, -5.953967548}

See similar equations:

| 3*8x-2=5*3x-6 | | 4x+2(-2x+3)=6 | | -25-x=-5x+51 | | 2x+7x+3y= | | 0.125(150+a)=125 | | T+t+5w+4(t+t)= | | 10m-30=70 | | [a-5]+10=14 | | 2x+2(-3x+27)=18 | | 3h-2(1+44h)= | | 3-(4+7)=h | | 7x+1=12+5x | | (-1-5i)(-1+5i)= | | H(3)+6(3)= | | 4x^2+32x+60= | | 0.25(4+a)=25 | | 6-x+7x+1=65 | | 8+4(4x-4)=8-4(2x+1) | | 6-(7*45)= | | -x-171=-9x+53 | | 36x=-18 | | 6-3(x-2)=x | | 12x+3=10x+7 | | .25(20z+10)+.5z-2.25= | | -2x-6(-2x-10)=30 | | 4x-10=1x+2 | | 61(31+25x)=153x-39 | | 26=4(5)+b | | -123+8x=97-2x | | -2(4.36-6.92x)=9.27x+2.87 | | 1(3)+7(3)= | | (5-7i)(-4-3i)= |

Equations solver categories